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Abstract: Regenerative medicine is a multidisciplinary field where continued progress relies on the incorporation of a 

diverse set of technologies from a wide range of disciplines within medicine, science and engineering. This review 

describes how one such technique, mathematical modelling, can be utilised to improve the tissue engineering of organs and 

stem cell therapy. Several case studies, taken from research carried out by our group, ACTREM, demonstrate the utility of 

mechanistic mathematical models to help aid the design and optimisation of protocols in regenerative medicine. 
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1. INTRODUCTION 

1.1. Background 

Regenerative medicine is a rapidly progressing field of 

medical science that promises to improve and save the lives 

of countless numbers of people over the coming decades. 

Important milestones in the clinical application of tissue 

engineering were achieved with the first in-human 

transplantations of tissue engineered tracheas using donor [1] 

and artificial scaffolds [2]. Clinical and pre-clinical studies 

have shown great promise for the tissue engineering of a 

range of organs including heart [3], lung [4], and oesophagus 

[5]. 

 The two major classes of therapies used in regenerative 

medicine, which are the subject of this paper, are the tissue 

engineering of organs [6, 7] and stem cell therapy [8, 9]. 

Tissue engineering refers to the methods by which a natural 

or artificial tissue engineering (TE) scaffold that serves as 

the extra cellular matrix (ECM) of an organ or tissue is 

implanted into a patient, with or without repopulating the 

scaffold with cells either ex vivo or in vivo. Stem cell therapy 

refers to the method of delivering cells directly to afflicted 

organs or tissues of the patient [10]. 
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 Both scaffold seeding and cell delivery to organs can be 

carried out using either mature or differentiated cells, or 

pluripotent cells. In the latter case the aim is to harness the 

reparative properties of the cells either through their ability 

to differentiate into adult cells, or as a means of boosting the 

endogenous repair mechanisms of the tissue. The types of 

stem cells that can be used are autologous stem cells 

harvested from the patient, e.g. mesenchymal stromal cells 

(MSCs) and mononuclear cells (MNCs) isolated from bone 

marrow, or non-autologous types of cells, e.g. embryonic 

stem cells (ESCs) [11]. 

1.2. New technologies for regenerative medicine 

Despite the early promising successes, the field of 

regenerative medicine faces significant scientific and 

technical challenges to the goal of attaining widespread 

clinical use [12]. The key problems lie in the creation of 

effective natural or artificial scaffolds for complex organs 

such as the heart and lung, and of ensuring the engraftment 

of sufficient numbers and types of seeded cells to ensure that 

TE organs become functional after implantation [13]. 

 Being a multidisciplinary field, regenerative medicine 

relies on the contribution from a diverse range of specialities 

within the medical, biological and engineering sciences. The 

result of this interdisciplinary collaboration has been the 

development of a raft of novel technologies including new 

materials [14] and fabrication techniques for TE scaffolds 

[15], the development and purification of stem cell lines 

[16], and methods for in vivo and in vitro cell tracking [17, 

18]. Progress in the field of regenerative medicine will 

continue to benefit greatly from the incorporation of new 

technologies and techniques sourced from outside of 

traditional biomedical disciplines. 

1.3. Mathematical modelling for regenerative medicine 

Regenerative medicine, as indeed all of biomedical science, 

is increasingly making use of advanced quantitative 
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methods. Beyond the traditional use of descriptive statistics 

and statistical hypothesis testing used for analysing 

experimental data, current research in stem cells and tissue 

engineering now routinely incorporates bioinformatics 

techniques [19] to infer the molecular profiles and 

interactions of cells and tissues in vitro and in vivo [20]. 

These methods use advanced statistics and sophisticated 

computer algorithms applied to the large volumes of data 

produced from experiments to infer biological mechanisms 

such as gene and protein interactions and signalling 

pathways within tissue samples [21]. 

 Another powerful quantitative approach being 

increasingly used in regenerative medicine is the use of 

mathematical modelling. The method involves creating a 

mathematical formulation of the underlying mechanisms of a 

biological system based on a priori understanding and 

experimental results. A mathematical model can be used to 

simulate and analyse the workings of a real biological 

system, thereby making it a powerful means of replacing in 

vitro and in vivo models for therapies in regenerative 

medicine. 

 An expansive literature pertains to mechanistic 

mathematical modelling studies applied to different areas of 

biomedicine. Mathematical modelling has been applied 

extensively to study cancer growth [22], and has successfully 

been used to optimise chemotherapy [23, 24]. Because 

regenerative medicine is a relatively new area, which has 

hitherto progressed mainly by experimental means, exciting 

opportunities are opening up for the application of 

mathematical modelling within the field. 

 The aim of this paper is to demonstrate how mechanistic 

mathematical modelling can be successfully applied to 

regenerative medicine. In §2 an explanation of the general 

principles of a mechanistic mathematical modelling 

approach is given. In §3 several key applications are 

described where mathematical modelling has been used in 

studies of tissue engineering and stem cell therapy carried 

out by our research group, the Advanced Center for 

Translational Regenerative Medicine (ACTREM). These 

include (i) biological TE scaffold production, (ii) seeding of 

TE organs, (iii) TE organ biomechanics, and (iv) stem cell 

delivery to the lung. This is followed in §3 by further 

discussion, and concluding remarks.   

2. GENERAL PRINCIPLES AND METHODOLOGY 

OF MATHEMATICAL MODELLING  

A comprehensive description of the techniques and methods 

used for building and evaluating mathematical models is 

beyond the scope of this article, and can be found elsewhere 

[25, 26], but a brief description is given as follows. The 

process of developing a mechanistic mathematical model is 

depicted in the flow chart in Fig. 1. The initial model 

formulation is based on inferences obtained from previous 

experiments and hypotheses, and usually begins with a 

schematic diagram encapsulating the key postulated 

mechanisms and their interactions. The nature of the 

included mechanisms can be diverse and may be chemical 

e.g. for describing the metabolism of nutrients by cells [27], 

or physical e.g. to account for fluid shear stress experienced 

by cells in bioreactors [28]. 

 These mechanisms are used as the basis of the 

formulation of the mathematical model. The result is a set of 

equations describing how the modelled quantities, e.g. the 

concentration of a metabolite or density of cells on a seeded 

scaffold, change within the tissue or experimental system 

with time. Examples of model equations arising in 

applications to regenerative medicine are given in §3 (see 

Figs. 2, 3 & 4). 

 A key challenge to the derivation of mathematical models 

for biological applications is to account for the vastly 

disparate spatial scales involved, which range from the sub-

cellular scale (< 1 μm) to the macroscopic scale (> 1 mm) 

[29]. The macroscopic-scale models presented in §3 do not 

directly take into account the behaviour of individual cells. 

However, some cellular-scale models used for tissue 

engineering directly simulate the motion and interactions of 

individual cells in tissue or in a bioreactor [30]. A topical 

area in mathematical modelling research is to formulate so 

called “multi-scale” models [31, 32] which can take into 

Figure 1: Workflow diagram of the formulation, validation and implementation of a mechanistic mathematical model. 
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account the different spatial and time scales inherent in tissue 

growth [33]. 

 To obtain predictions from the mathematical model 

involves “solving” it to determine how the modelled 

quantities vary with time and space within the experimental 

system. The solution procedure can be done manually using 

pen and paper, which is called an “analytical solution 

method” or with the aid of a computer. Models that make 

significant use of computer algorithms and resources, such 

as models based on individual cells, are called 

“computational models”. Such computational approaches 

arise when performing computational fluid dynamics (CFD) 

simulations of the fluid flow within bioreactors [34], and in 

the finite elements techniques used to model the complex 

geometries of scaffolds and organs [35]. 

Owing to the inherent complexity of biological systems, 

even relatively simple mechanistic mathematical models can 

depend on a large number of parameter values. These 

parameters typically characterise intrinsic properties within 

the experimental system, such as the rate of a chemical 

reaction or the speed of cell migration. Model parameter 

values can be obtained by carrying out specific experiments, 

or by sourcing them from published studies. It is standard 

practice to determine unknown parameter values by “fitting” 

the model solutions to the experimental data [36]. Validating 

a mathematical model is carried out by comparing the model 

predictions against new experimental data not used for the 

fitting procedure. If the predictions do not agree 

satisfactorily with the data, or the model predicts spurious 

behaviour, the model should be refined by adding additional 

mechanisms, and then revalidated [37]. 

 For the applications of mathematical modelling to 

regenerative medicine, such as those described in §3, 

analysis of the predictions of the validated model over 

ranges of values of controllable experimental parameters can 

yield useful information on how to optimise an experiment 

or therapy. 

3. CASE STUDIES OF THE APPLICATION OF 

MATHEMATICAL MODELLING TO 

REGENERATIVE MEDICINE 

This section presents examples that demonstrate how 

mathematical modelling, using the methodology described in 

§2, is being applied to research in tissue engineering and 

stem cell therapy within ACTREM. Reference is given to 

related studies reported in the literature, and possible future 

directions for research. 

3.1. Organ decellularisation 

The production of biological TE scaffolds from donor organs 

requires the careful use of decellularisation protocols to 

remove immunogenic cellular components from the tissue 

while leaving the underlying ECM intact. Decellularisation 

involves alternatively rinsing the organ with detergents (e.g. 

deoxycholate), enzymes (e.g. DNAase) and purified water 

over a repeated series of cycles. 

 Decellularisation protocols have been developed for a 

variety of organs [38]. However, applying a pre-specified 

protocol, in terms of the concentration of reagents used and 

the duration of the cycles, may not necessarily be optimal for 

a given organ due to variability of properties such as size, 

donor age, and the initial state of degradation of the organ. 

Applying the protocol too rigorously to an organ may be 

detrimental to the ECM but, in contrast, inadequately 

applying the protocol may leave allogeneic remnants in the 

tissue. Thus the decellularisation protocol should ideally be 

adjusted to suit the particular organ being decellularised. 

  Such an approach calls for a way of non-destructively 

Figure 2: Customised decellularisation of biological scaffolds. During decellularisation the change in colouration of the 

scaffold is quantified (a) and compared (b) to the results from the mathematical model (c) to predict the optimal 

decellularisation time. 
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measuring the amount of cellular material in an organ [39]. 

Our approach is to quantify changes in the degree of red 

colouration of the organ from digital images taken during the 

decellularisation (Fig. 2). As decellularisation proceeds, and 

cellular debris is released from the tissue, the depth of the 

red colouration fades and the tissue becomes a white 

translucent colour (Fig. 2 (a), (b)). 

 Mathematical modelling was used to obtain a quantitative 

relationship between the amount of cellular material 

remaining in the scaffold and the degree of observed red 

colouration. The mechanisms used to build the model 

include an account of the diffusive transport of cellular 

remnants from the interior of the organ into the surrounding 

media, and how incident light on the scaffold is dispersed 

from the remaining cellular material thereby giving rise to 

the observed red colouration. 

 The analytical solution of the mathematical model (Fig. 2 

(c)) is a formula for the predicted amount of red colouration 

of the organ with respect to time. Calculating the value of 𝑟 

for each value of 𝑡 involves summing an infinite series of 

terms where 𝑛 = 1,2,3 … etc. (in practice, however, it is 

sufficient to terminate the summation at a very large value of 

𝑛). The equation contains unknown parameters 𝐴 and 𝐵 

which specify the initial and base levels of the colouration, 

and 𝑘𝑑 which characterises the rate of diffusion of cellular 

material through the tissue. Estimates for the three 

parameters are determined in real time during the 

decellularisation procedure, by fitting the values of the 

model to the colouration data as each new image is received 

by the camera. The predicted time taken for complete 

decellularisation is calculated based on how long it takes for 

𝑟(𝑡) calculated from Fig. 2 (c) to remain within a small 

range of the final value (blue lines in Fig. 2 (b)). By 

continuing the decellularisation protocol until the time 

predicted by the model (vertical dashed line in Fig. 2 (b)), 

the organ is subject to the shortest possible protocol that 

removes sufficient cellular material without deleteriously 

affecting the ECM of the organ. 

 Such “customised” and automated decellularisation 

technologies, which are being successfully applied in our 

preclinical studies of the oesophagus, intestine and kidney of 

rats, are likely to feature prominently in future research and 

clinical translation as a means of rapidly facilitating the 

production of high quality TE scaffolds [40] . 

3.2. TE organ reseeding 

 A critical step in the production of TE organs is the 

seeding of artificial and biological scaffolds with cells. 

Scaffold seeding typically involves the use of large numbers 

of cells, and there is an urgent need to optimise the cells 

Figure 3: Mathematical modelling of seeding of a tissue engineered trachea (a). The different processes acting on the 

cells in the bioreactor (b) are used to formulate a mathematical model (c) that predicts the cell coverage at the end of 

the incubation (d). 
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harvested for clinical therapy and pre-clinical research [41]. 

Mathematical and computational modelling studies 

concerned with understanding and optimising cell seeding 

[42-44] and growth [45-47] in TE scaffolds can be put to 

good use for this purpose by informing of the minimum 

number of cells required for the seeding. 

 In our preclinical studies involving the static reseeding of 

decellularised rat oesophageal [5], diaphragmatic and 

intestinal scaffolds with rat MSCs the number of cells used 

for the seeding was determined based on the number of 

attached cells that would fully cover the external surfaces 

(due to the static seeding method and the incubation time 

being typically less than 50 hours there was negligible cell 

migration into the scaffold interior). For the case of the 

reseeding of a decellularised rat diaphragm, a typical value 

used for the scaffold area was 𝐴𝑑 = 9 cm
2
, and the cell area 

was 𝐴𝑎 = 281 μm
2 

which was obtained from studies of rat 

MSCs attached to electrospun fibres [48]. This gives 

𝑁𝑠 = 𝐴𝑑 𝐴𝑎⁄ = 3.2 × 106 as the number of cells required for 

the seeding.  

 Such a calculation provides an approximate estimate for 

the number of cells required, however it does not take into 

account effects such as cell spreading and proliferation, and 

distributions in cell size, all of which can significantly 

complicate the analysis [49]. Another important effect is the 

loss of cells from the scaffold, due to detachment and death, 

which can be particularly significant where dynamic seeding 

methods are used. The type of bioreactor currently used in 

the clinic to seed tracheal scaffolds with MNCs from patients 

is shown in Fig. 3(a). The cells are pipetted manually onto 

the scaffold, followed by incubation for approximately 50 

hours to allow the cells to attach, spread and proliferate over 

the scaffold. A key problem is that the constant mechanical 

rotation of the scaffold (which is done to keep it moist while 

maintaining exposure of cells to the air) generates fluid shear 

stress that causes large numbers of cells to be lost to the 

bioreactor bath. To account for this loss in the estimate for 

the number of cells for the seeding, mechanistic 

mathematical modelling was carried out of the fate of cells in 

the bioreactor (Fig. 3). 

 The derivation of the mathematical model utilises 

understanding of the different physical and biological 

processes involving the cells. These include cell attachment, 

spreading, proliferation, and desorption and adsorption of 

cells due to contact with the fluid in the bath (Fig. 3 (b)). The 

resulting mathematical model is in the form of a set of 

ordinary differential equations (ODEs). Fig. 3 (c) gives the 

specific equation describing the surface density of 

unattached cells, 𝑛𝑢, on the scaffold at a given time, 𝑡. The 

variables 𝑛𝑢 and 𝑛𝑚 respectively represent the densities of 

cells atttached to the scaffold and of cells in the bioreactor 

bath. The superscript ± is used to distinguish cells attached to 

the external and internal surfaces of the scaffold. The 

quantities 𝐴𝑎 and 𝐴𝑢 represent the specific areas of 

individual attached cells and unattached cells. The quantities 

of the form 𝑘𝑋 are rate parameters for the transitions between 

the different cell compartments. The function 𝐺 characterises 

the effect of the multi-layering of the cells on the rate of 

attachment.  

 For a given number of cells initially seeded onto the 

scaffold, the model equations are solved to obtain the total 

numbers of attached cells on the tracheal scaffold at the end 

of the incubation period (Fig. 3 (d)). The model allows the 

correct number of cells to be estimated for bioreactor seeding 

of any scaffold of a given size. 

 With the same kind of bioreactor as shown in Fig. 3 (a), 

mathematical modelling has been used to study nutrient 

consumption by cells seeded onto tracheal scaffolds [50, 51]. 

An implication of these studies, and others concerning 

nutrient depletion in scaffolds [52, 53], is that the depth of 

tissue penetration into a scaffold after implantation will be 

limited if it does not become sufficiently vascularised [54]. 

 Such modelling studies are conventionally developed in 

parallel but not usually intimately connected with laboratory 

experimental work. There is however a need to implement 

the predictive ability of models within practical devices to 

aid laboratory and clinical procedures [55]. Similarly to the 

automated system for the production of biological scaffolds 

described in §3.1, the mathematical model for TE scaffold 

seeding described above could form the basis of a controller 

to produce optimal bioreactor seeding [56]. Such a system 

could incorporate non-invasive means of quantifying cell 

coverage, sensors for various environmental variables within 

the bioreactor, and be capable of controlling bioreactor 

inputs, such as actuators to deliver growth factors. Using the 

principles of model-based control [57], a feedback controller 

could be derived from the mathematical model to optimally 

guide the incubation of the scaffold, in real time, so as to 

achieve optimal cell coverage. The model-based controller 

would continuously monitor the bioreactor sensors and in 

response manipulate the control inputs to ensure that full 

coverage of attached cells is maintained, while minimising 

the amounts of cell detachment, apoptosis and aberrant cell 

differentiation. 
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 Hitherto the goal of bioreactor seeding has been to 

produce a TE scaffold having a highly confluent layer of 

viable stem cells attached to the surface. There remains a 

wider question of whether this constitutes a sufficient 

number of cells to bring about complete regeneration of the 

organ after implantation. To address this question 

mathematical modelling has been carried out of regeneration 

mechanisms of TE organs and tissues including bone [58], 

cartilage [59], skin [60] and MSC-seeded tracheal scaffolds 

[59]. The need for vascularisation of TE organs means that 

mathematical modelling of angiogenesis [62, 63] will play a 

key role in future modelling studies. 

3.3. TE organ biomechanics 

It is important to be able to measure the mechanical 

properties of TE organs so as to ensure that they can function 

robustly after implantation. Mathematical modelling can be 

used to predict the stresses and strains induced within 

implanted TE organs under normal physiological conditions. 

There is an extensive literature of mathematical and 

computational modelling studies investigating the 

mechanical behaviour of native organs, including trachea 

[64], lung [65] and heart [66], with an emphasis on 

understanding pathologies. There are, however, far fewer 

modelling studies which investigate TE organs.  

 There is a particular need to ensure mechanical viability 

of biological scaffolds [67] because directly after 

implantation they lack the full complement of cells which 

typically reside within native organs. These cells contribute 

significantly to the organ’s mechanical properties, 

particularly smooth muscle cells (SMCs) which are capable 

of active force generation. 

 By testing small portions of decellularised or artificial 

tissue using uniaxial or biaxial testing apparatus, quantitative 

data can be obtained of tensile strength, yield stress, 

elasticity, viscoelasticity and anisotropy properties [68]. 

Such data is used to derive constitutive laws [69] to relate the 

stress developed in response to strain within localised parts 

of a TE graft. Based on these constitutive laws, mathematical 

models can be developed to predict the stresses and strains 

generated throughout an entire TE organ or graft after 

implantation [70]. This is done to ensure that the graft is 

mechanically compatible with the host tissue, and that 

breaking stresses within the implant are not exceeded. 

 Another mechanical property of biological tissue, which 

is important within the context of tissue engineering, is its 

response to fatigue stress. Extended periods of being subject 

to repeated cycles of stretch, due to the normal cyclic 

processes that occur in vivo, can cause the accumulation of 

damage to the underlying ECM of tissues [71]. Without 

remodelling of the ECM by resident cells, this accumulated 

fatigue can lead to failure of the organ. Current research in 

ACTREM involves the evaluation of the fatigue properties 

of tubular biological scaffolds (Fig. 4) by subjecting them to 

cyclic luminal pressure waveforms (Fig. 4 (a)) and 

measuring the corresponding change in organ dimensions 

over time (Fig. 4 (b)). 

Figure 4: Fatigue testing of tissue engineered organs. Data acquired from image analysis (a) of organs subject to 

cyclical pressure is fitted (b) to a mathematical model (c) to determine model parameter values. 
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 To complement the experimental work, mathematical 

modelling is being used to characterise the changes in elastic 

properties of the organ wall due to accumulated fatigue, and 

how the fatigue response of the decellularised tissue differs 

from that of native tissue. The mathematical model shown in 

Fig. 4 (c) describes the response of an organ to a cyclical 

pressure waveform and comprises two parts: (i) the equation 

giving the diameter of the organ, 𝐷𝑛, at the maximum 

applied pressure, 𝑃𝑛, and (ii) the equation for how the 

unstretched (zero applied pressure) diameter, 𝑑𝑛, changes 

with the applied number of cycles, 𝑛. In these equations 𝑑0 

is the initial diameter, 𝐸 is Young’s modulus, 𝛿, is the wall 

thickness, and 𝐹 is a function that characterises the response 

of tissue to accumulated fatigue. The appropriate form of the 

function 𝐹 is determined by fitting the mathematical model 

to the experimental data (Fig. 4 (b)). 

3.4. Stem cell delivery 

Mathematical modelling is also a useful tool for stem cell 

therapy, as a means of determining the optimal delivery 

protocols for targeting of cells to organs. We are using 

mathematical modelling to study the intratracheal delivery 

[72] of MSCs to the lung in a rat model of pulmonary 

hypertension (PHT) [10]. The delivery procedure involves 

injecting a suspension of cells into the trachea, followed by 

an injection of air behind the liquid to force it down into the 

alveolar regions where the delivered MSCs promote the 

repair of damaged pulmonary vessels. 

 Mathematical modelling is being used to guide the 

determination of a protocol that will deliver the maximum 

number of cells to the alveolar regions of the lung (Fig. 5). 

The physical principles used to construct the model are based 

on the physics of plugs of liquid propagating along straight 

tubes (Fig. 5 (a)). The model includes a morphometric 

description of the rat lung and accounts for effects such as 

lung asymmetry and the changes in the volume of the lung 

due to inflation. The model was adapted from similar 

Figure 5: Mathematical modelling of intratracheal cell delivery. A suspension of MSCs is injected into the trachea and 

forced down in the airway using ventilation with air (a). Consideration of the physical mechanisms acting on the fluid 

(b) is used to derive a mathematical model to predict the proportion of cells reaching the alveolar regions (c). 
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modelling approaches used to study the delivery of 

surfactant to the lungs of neonates [73, 74]. 

 As the fluid plugs propagate through the conducting 

zone, they split at the bifurcations in the airway tree. The 

plugs deposit a thin layer of cell suspension on the walls of 

the airway tubes, the thickness of which depends on the rate 

of injection of air (Fig. 5 (b)). The mathematical model 

predicts the proportion of cells that are delivered to the 

alveolar regions in terms of experimental parameters such as 

the volume of the suspension, 𝑉ins, and the rate of 

ventilation, 𝑄ven (Fig. 5 (c) – centre panel). 

 The model predicts that the optimal protocol comprises a 

rapid injection of the cell suspension into the trachea, so as 

to promote the formation of a stable plug of fluid in the 

upper airway, followed by a slow ventilation so as to 

minimise the thickness of deposited layer thereby 

minimising the loss of cells to the conducting zone. Also to 

minimise the cell loss, the volume of the cell suspension 

should be maximised thereby minimising the volume of the 

liquid film relative to the total volume of suspension 

(concomitant on the amount of delivered liquid not 

obstructing gas exchange in the respiratory zone). The 

predictions of the mathematical model will be validated 

using data of the numbers of green fluorescent protein 

(GFP)-labelled cells counted in digital images of cross-

sections of excised rats lungs (Fig. 5 (c) – side panels). 

 One noteworthy aspect is that this model is not 

appropriate for lungs of adult humans because of the larger 

sizes of the airway tubes. In the case of the adult human lung 

stable fluid plugs cannot form in the upper airway and the 

injected cell suspension tends to flow down into the lung 

under gravity. To study cell delivery in this case would 

require CFD simulations, incorporating highly resolved 

representations of lungs, to accurately simulate the flow of 

the cell suspension through the airway tree. Such 

computational modelling approaches have been pursued 

extensively for the simulation of aerosol deposition in 

airways [75, 76]. Computational modelling involving CFD 

should also be useful for understanding how to seed complex 

biological TE scaffolds, such as the kidney and lung, by 

perfusion of a cell suspension through the organs’ remnant 

vasculature. 

 As in the case of the model for bioreactor seeding 

described in §3.2, the cell delivery model does not provide 

information about the number of stem cells needed to be 

injected to successfully repair the lung. For this, information 

about the long-term fate of the delivered cells and the dose-

response mechanisms of the MSCs would need to be 

included in the model. A barrier to creating mechanistic 

models of the reparative effects of MSCs is an imprecise 

knowledge of the mechanisms involved, and to what extent 

their reparative properties is due to differentiation into the 

phenotypes of the host tissue [77] as compared to paracrine 

and endocrine effects that stimulate endogenous repair [78]. 

 This question is however a fertile area for research in 

mathematical modelling, and will allow hypotheses 

concerning the mechanisms, such as modulation of 

inflammation [61, 79] and stem cell differentiation [80], to 

be explored. The understanding of systemic effects including 

the homing of endogenous stem cells to organs and the 

mechanisms of inflammation, could be aided using whole 

body pharmacokinetic models [81, 82]. Such models will 

also be informative for optimising stem cell delivery via 

systemic routes e.g. by intravenous injection. 

 Quantitative predictions of the dose response of stem 

cells obtained from such studies could be incorporated into 

mechanistic models for cell delivery and used to calculate 

the number and timing of the doses of stem cells, in a similar 

way that has been achieved with models that predict the 

optimal dosage in cancer treatments [24].   

4. DISCUSSION 

This paper has highlighted the use of mathematical 

modelling as a valuable tool for research in different areas of 

tissue engineering and stem cell therapy. In §3 a broad range 

of examples of such applications of mathematical modelling 

used by our group (ACTREM) were given. The list is not 

exhaustive but serves to illustrate the utility and scope of 

mathematical modelling techniques within regenerative 

medicine. Those examples also serve to motivate further 

work and model refinements. 

 The current trend with mathematical and computational 

modelling is to produce progressively more sophisticated and 

refined mathematical multi-scale models of tissues and 

organs which incorporate large volumes of “omics” data 

[83]. It is possible to envisage that eventually highly realistic 

computational models of whole organs will be built on which 

to perform experiments, instead of living tissue [84]. The 

idea of virtual or so called “in silico” organs and tissues has 

been pursued actively for the heart [85], liver [86], lung [87] 

and cancerous tissue [88]. 

 There are, however, significant challenges to creating 

realistic in silico organs for the use in regenerative medicine. 

There is still a lack of complete understanding of the 

underlying mechanisms contributing to the growth and 

regeneration of engineered tissues, particularly those 

concerning the therapeutic action of stem cells [89] and 

systemic effects such as inflammation and cell homing. In 

addition, the need to resolve fine structural details in the 

tissue make in silico mathematical models of whole organs 

computationally demanding to solve [90]. This will, 

however, become more feasible with the relentless increase 

in the power of cheaply-available computer hardware. A 

more modest approach, and that which was pursued in the 

applications presented in §3, was to develop specialised 

models tailored for particular experiments and therapies. The 

methodology used was to intimately combine in vitro and in 

silico modelling approaches. 

 However, with all mathematical models a fundamental 

problem lies in being able to accurately determine the values 

of model parameters from available experimental data [91]. 

Whereas many modelling studies use parameter values that 



hort Running Title of the Article Journal Name, 2015, Vol. 0, No. 0 9 

are “typical” or “representative” of the tissue, the effective 

clinical translation of mathematical models requires the use 

of accurately determined patient-specific parameters [92, 

93]. 

 An appealing aspect of the use of mechanistic 

mathematical models for tissues lies in the potential time and 

cost saved through reducing the amount of laboratory work 

required. Also, research in regenerative medicine requires 

large numbers of animals to be sacrificed for the 

development of surgical techniques, the testing of therapies, 

and the harvesting of stem cells. In silico models can in 

principle be used as a substitute for laboratory and human 

subjects; experimentation and optimisation of therapies 

could be carried out painlessly on “virtual” tissues and 

organs. In silico models will also become an important tool 

for reducing the reliance on animal experimentation in 

regenerative medicine in the future [94]. 

CONCLUSION 

 Mathematical modelling is a highly effective research 
tool for tissue engineering and stem cell therapy. 
Mathematical modelling techniques should be well 
integrated with experimental work, with a continual 
interaction between experiments, theory and simulation. This 
will allow for the creation of more refined and accurate 
models for use in regenerative medicine. 
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